5,400 research outputs found

    The properties of Low Surface Brightness galaxies

    Get PDF
    A description is given of the samples of Low Surface Brightness galaxies (LSBs) used for comparison with models of their chemical and spectro-photometric evolution (Boissier et al., this Volume). These samples show the large variation and scatter in observed global properties of LSBs, some of which cannot be modeled without adding starbursts or truncations to their star formation history.Comment: To appear in the Proceedings of the Euroconference on The Evolution of Galaxies: III. From simple approaches to self-consistent models (Kluwer). 4 page

    Strong Near-Infrared Emission Interior to the Dust-Sublimation Radius of Young Stellar Objects MWC275 and AB Aur

    Get PDF
    Using the longest optical-interferometeric baselines currently available, we have detected strong near-infrared (NIR) emission from inside the dust-destruction radius of Herbig Ae stars MWC275 and AB Aur. Our sub-milli-arcsecond resolution observations unambiguously place the emission between the dust-destruction radius and the magnetospheric co-rotation radius. We argue that this new component corresponds to hot gas inside the dust-sublimation radius, confirming recent claims based on spectrally-resolved interferometry and dust evaporation front modeling.Comment: 12 pages, 4 figures, Accepted for publication in ApJ

    Multi-epoch Near-Infrared Interferometry of the Spatially Resolved Disk Around the Be Star Zeta Tau

    Full text link
    We present interferometric observations of the Be star Zeta Tau obtained using the MIRC beam combiner at the CHARA Array. We resolved the disk during four epochs in 2007-2009. We fit the data with a geometric model to characterize the circumstellar disk as a skewed elliptical Gaussian and the central Be star as a uniform disk. The visibilities reveal a nearly edge-on disk with a FWHM major axis of ~ 1.8 mas in the H-band. The non-zero closure phases indicate an asymmetry within the disk. Interestingly, when combining our results with previously published interferometric observations of Zeta Tau, we find a correlation between the position angle of the disk and the spectroscopic V/R ratio, suggesting that the tilt of the disk is precessing. This work is part of a multi-year monitoring campaign to investigate the development and outward motion of asymmetric structures in the disks of Be stars.Comment: Accepted for publication in the Astronomical Journal. 27 pages, 7 Figure

    The Inner Rim of YSO Disks: Effects of dust grain evolution

    Get PDF
    Dust-grain growth and settling are the first steps towards planet formation. An understanding of dust physics is therefore integral to a complete theory of the planet formation process. In this paper, we explore the possibility of using the dust evaporation front in YSO disks (`the inner rim') as a probe of the dust physics operating in circumstellar disks. The geometry of the rim depends sensitively on the composition and spatial distribution of dust. Using radiative transfer and hydrostatic equilibrium calculations we demonstrate that dust growth and settling can curve the evaporation front dramatically (from a cylindrical radius of about 0.5 AU in the disk mid-plane to 1.2 AU in the disk upper layers for an A0 star). We compute synthetic images and interferometric visibilities for our representative rim models and show that the current generation of near-IR long-baseline interferometers (VLTI, CHARA) can strongly constrain the dust properties of circumstellar disks, shedding light on the relatively poorly understood processes of grain growth, settling and turbulent mixing.Comment: 26 pages, 9 figures. Accepted for publication in Ap

    High-pressure transport properties of CeRu_2Ge_2

    Full text link
    The pressure-induced changes in the temperature-dependent thermopower S(T) and electrical resistivity \rho(T) of CeRu_2Ge_2 are described within the single-site Anderson model. The Ce-ions are treated as impurities and the coherent scattering on different Ce-sites is neglected. Changing the hybridisation \Gamma between the 4f-states and the conduction band accounts for the pressure effect. The transport coefficients are calculated in the non-crossing approximation above the phase boundary line. The theoretical S(T) and \rho(T) curves show many features of the experimental data. The seemingly complicated temperature dependence of S(T) and \rho(T), and their evolution as a function of pressure, is related to the crossovers between various fixed points of the model.Comment: 9 pages, 10 figure

    Imaging the circumstellar envelopes of AGB stars

    Full text link
    We report the results of an exploratory program to image the extended circumstellar envelopes of asymptotic giant branch (AGB) stars in dust-scattered galactic light. The goal is to characterize the morphology of the envelopes as a probe of the mass-loss process. The observations consist of short exposures with the VLT and longer exposures with 1-2m telescopes, augmented with archival images from the Hubble Space Telescope. We observed 12 AGB stars and detected the circumstellar envelopes in 7. The detected envelopes have mass loss rates more than about 5 10E-6 solar mass per year, and they can be seen out to distances of about 1 kpc. The observations provide information on the mass loss history on time scales up to about 10,000 years. For the five AGB envelopes in which the circumstellar geometry is well determined by scattered light observations, all except one (OH348.2-19.7) show deviations from spherical symmetry. Two (IRC+10216 and IRC+10011) show roughly spherical envelopes at large radii but asymmetry or bipolarity close to the star; one (AFGL 2514) shows an extended, elliptical envelope, and one (AFGL 3068) shows a spiral pattern. The non-spherical structures are all consistent with the effects of binary interactions. Our observations are in accord with a scenario in which binary companions play a role in shaping planetary nebulae, and show that the circumstellar gas is already partly shaped on the AGB, before evolution to the proto-planetary nebula phase.Comment: Accepted by AA 21 Feb 2006; 18 pages, 14 figs; for high resolution images, contact mauron at graal.univ-montp2.f

    Imaging the asymmetric dust shell around CI Cam with long baseline optical interferometry

    Get PDF
    We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8 year period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data shows that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis a = 7.58 +/- 0.24 mas, an axis ratio r = 0.39 +/- 0.03 and a position angle theta = 35 +/- 2 deg.Comment: 9 pages, 5 figures, accepted MNRA

    First astronomical unit scale image of the GW Ori triple. Direct detection of a new stellar companion

    Get PDF
    Young and close multiple systems are unique laboratories to probe the initial dynamical interactions between forming stellar systems and their dust and gas environment. Their study is a key building block to understanding the high frequency of main-sequence multiple systems. However, the number of detected spectroscopic young multiple systems that allow dynamical studies is limited. GW Orionis is one such system. It is one of the brightest young T Tauri stars and is surrounded by a massive disk. Our goal is to probe the GW Orionis multiplicity at angular scales at which we can spatially resolve the orbit. We used the IOTA/IONIC3 interferometer to probe the environment of GW Orionis with an astronomical unit resolution in 2003, 2004, and 2005. By measuring squared visibilities and closure phases with a good UV coverage we carry out the first image reconstruction of GW Ori from infrared long-baseline interferometry. We obtain the first infrared image of a T Tauri multiple system with astronomical unit resolution. We show that GW Orionis is a triple system, resolve for the first time the previously known inner pair (separation ρ\rho\sim1.4 AU) and reveal a new more distant component (GW Ori C) with a projected separation of \sim8 AU with direct evidence of motion. Furthermore, the nearly equal (2:1) H-band flux ratio of the inner components suggests that either GW Ori B is undergoing a preferential accretion event that increases its disk luminosity or that the estimate of the masses has to be revisited in favour of a more equal mass-ratio system that is seen at lower inclination. Accretion disk models of GW Ori will need to be completely reconsidered because of this outer companion C and the unexpected brightness of companion B.Comment: 5 pages, 9 figures, accepted Astronomy and Astrophysics Letters. 201

    Imaging the Algol Triple System in H Band with the CHARA Interferometer

    Full text link
    Algol (Beta Per) is an extensively studied hierarchical triple system whose inner pair is a prototype semi-detached binary with mass transfer occurring from the sub-giant secondary to the main-sequence primary. We present here the results of our Algol observations made between 2006 and 2010 at the CHARA interferometer with the Michigan Infrared Combiner in the H band. The use of four telescopes with long baselines allows us to achieve better than 0.5 mas resolution and to unambiguously resolve the three stars. The inner and outer orbital elements, as well as the angular sizes and mass ratios for the three components are determined independently from previous studies. We report a significantly improved orbit for the inner stellar pair with the consequence of a 15% change in the primary mass compared to previous studies. We also determine the mutual inclination of the orbits to be much closer to perpendicularity than previously established. State-of-the-art image reconstruction algorithms are used to image the full triple system. In particular an image sequence of 55 distinct phases of the inner pair orbit is reconstructed, clearly showing the Roche-lobe-filling secondary revolving around the primary, with several epochs corresponding to the primary and secondary eclipses
    corecore